
1.  Introduction
The hydroxyl radical (OH) is a powerful oxidizing agent in the troposphere controlling the atmospheric life-
times of many short-lived climate forcers (SLCFs). For example, methane (CH4), a well-mixed greenhouse 
gas that is short-lived compared to carbon dioxide (CO2), is removed from the atmosphere mainly through 
its reaction with OH in the troposphere, thereby influencing its budget and lifetime and therefore its climate 
impact. The global abundance and distribution of OH are primarily controlled by nonlinear atmospheric 
chemistry driven by emissions of SLCFs and modulated by meteorology. Here, we investigate the influence 
of uncertainty in OH induced by uncertainties in meteorology on the budget and lifetime of methane.

OH concentrations respond to a number of factors, namely: concentrations of ozone (O3); emissions of 
nitrogen oxide (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs); and meteorology, 
namely temperature, water vapor, and ultraviolet radiation (Spivakovsky et al., 2000). Intercomparison of 
results from global atmospheric chemistry models show significant intermodel diversity in the simulat-
ed OH distribution, variability, and trends (Naik, Voulgarakis, et al., 2013; Voulgarakis et al., 2013; Zhao 
et al., 2019). This model diversity has been primarily attributed to differences in chemical mechanisms that 
result in differences in the chemical drivers of OH (Nicely et al., 2020; Wild et al., 2020; Zhao et al., 2019). 
An additional possible source of diversity is differences in meteorology across models that arise either be-
cause models produce their own meteorology (free-running) (e.g., Stevenson et al., 2020; Zhao et al., 2019) 
or are forced by reanalyzed meteorological fields (nudged) (e.g., Dalsøren et al., 2016). Differences in the 
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representations of dynamics and transport in the free-running models and different nudging approach for 
large-scale flows and different reanalysis products in nudged models could lead to differences in modeled 
meteorology (Orbe et al., 2020). These differences lead to different large-scale dynamical features, such as 
the El Niño-Southern Oscillation (ENSO), which play an important role in regulating OH variability (An-
derson et al., 2021; Turner et al., 2017).

To estimate the global and regional methane budget, atmospheric observations are combined with chemical 
transport models (CTMs) either with interactive OH chemistry or prescribed OH fields. In the bottom-up 
process-based model approach, the methane-OH sink is explicitly simulated in the model with consid-
eration of methane-OH feedback (e.g., Dalsøren et  al.,  2016; He et  al.,  2020); however, model-to-model 
differences in OH, as noted above, introduce uncertainty in methane budget and lifetime. In the top-down 
inverse modeling approach, methane emissions are optimized by assimilating observations while OH con-
centrations are prescribed (either based on the climatological OH fields from model output or inferred from 
observations) (e.g., Patra et al., 2016; Rice et al., 2016; Tsuruta et al., 2017) and uncertainties in the estimated 
global and regional methane budget are solely attributed to methane emissions (Saunois et al., 2020). In a 
recent study, Zhao et al. (2020) evaluated the influence of spatio-temporal variations in OH on the top-down 
estimate of global and regional methane budget by implementing OH fields from 10 chemistry models 
participating in the Chemistry-Climate Model Imitative (CCMI) in a four-dimensional inversion system. 
They found that the uncertainties in the derived methane emissions were similar to those estimated from 
bottom-up approaches and greater than those reported for top-down estimates, highlighting the need for 
better quantification of uncertainties in OH distribution and spatio-temporal variability.

In this study, we explore uncertainties in OH distribution, trends, and variability, and the resulting im-
pacts on the methane budget and lifetime due to differences in meteorology. We apply simulations of the 
full-chemistry version of the Geophysical Fluid Dynamics Laboratory (GFDL) new-generation Atmospher-
ic Model, version 4.1 (AM4.1; Horowitz et al., 2020; Zhao et al., 2018a, 2018b) nudged to two different rea-
nalysis products to investigate meteorology-driven uncertainties in OH.

2.  Model Description and Simulation Design
We use GFDL-AM4.1, the atmospheric component of the new generation GFDL Earth System Model 
(ESM4) (Dunne et al., 2020). The physics and dynamics of AM4.1 are built upon GFDL's AM4.0 atmospher-
ic model (Zhao et al., 2018a, 2018b) and include fully interactive tropospheric and stratospheric chemistry 
described in detail by Horowitz et al. (2020). In its standard form, the model setup consists of a cubed sphere 
finite-volume dynamical core with a horizontal resolution of ∼100 km and 49 vertical levels extending from 
the surface up to ∼80 km. The model's lowermost level is ∼30 m thick. The chemical scheme includes a 
total of 58 prognostic gas-phase tracers, 18 prognostic aerosol tracers, 5 prognostic ideal tracers, and 40 di-
agnostic chemical tracers, with 43 photolysis reactions (with photolysis rates calculated based on Fast-JX (Li 
et al., 2016) and dependent on simulated ozone, aerosols, and clouds), 190 gas-phase kinetic reactions, and 
15 heterogeneous reactions in this version of AM4.1 to represent tropospheric and stratospheric chemistry.

We conduct several hindcast simulations for 1980–2017, as listed in Table S1, to investigate the OH response 
to different meteorological forcing. We start with a standard model configuration, following Atmospheric 
Model Intercomparison Project (AMIP) protocol, which forces the model with prescribed interannually 
varying sea surface temperatures and sea ice (Taylor et al., 2000) without atmospheric nudging. This exper-
iment is referred to as “AMIP.” The sensitivity experiments with horizontal winds nudged to the National 
Centers for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996) and the Modern-Era Retro-
spective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017) are referred to as 
“NCEP” and “MERRA”, respectively. In both NCEP and MERRA experiments, we use a pressure-dependent 
nudging technique (Lin et al., 2012) and apply a relaxation time scale of 6 h to the nudged fields. In these 
three experiments, methane concentrations are prescribed as lower boundary conditions, which is a stand-
ard AMIP configuration. We also conduct two additional methane emission-driven experiments, forced by 
NCEP and MERRA-2 reanalysis and referred to as “NCEPe” and “MERRAe,” to take a closer look at the re-
gional impacts. We constrain methane emissions with surface methane observations from the Global Mon-
itoring Laboratory (GML) of the National Oceanic and Atmospheric Administration (NOAA), as described 
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in He et al. (2020), for these two experiments. Since OH concentrations are different due to different meteor-
ology, the optimized methane emissions are therefore different in NCEPe and MERRAe. For all the nudged 
experiments, only horizontal winds are nudged to the reanalysis to allow all other meteorological fields to 
evolve under the model physics and avoid possible unintentional perturbation on the model states.

Anthropogenic and biomass burning emissions of short-lived species are same as those in He et al. (2020), 
compiled from the Community Emissions Data System (CEDS, version May 18, 2017, Hoesly et al., 2018) 
and van Marle et al. (2017) for 1980–2014, and from a middle-of-the-road scenario of Shared Socioeconom-
ic Pathways targeting a forcing level of 4.5 W m−2 (SSP2-4.5; Gidden et al., 2019) for 2015–2017. Natural 
emissions of short-lived species are from Naik, Horowitz, et al. (2013). The online emission calculations 
including biogenic VOCs, dimethyl sulfide (DMS), lightning NOx (LNOx), dust, and sea salt are described in 
Text S1. These emissions depend on the simulated meteorology in the model and thus are different among 
the three simulations as summarized in Table S2.

3.  Results and Discussions
3.1.  Comparisons of OH and Major Drivers

Figure 1 shows the comparisons of zonal mean OH concentrations and its major drivers (temperature, spe-
cific humidity, lighting NOx emissions, and ozone photolysis rate) from AMIP, NCEP, and MERRA simula-
tions. The climatological mean of tropospheric mean fields is summarized in Table S3. Compared to NCEP, 
MERRA generally simulates slightly higher temperature in most regions, but lower temperature in the 
upper troposphere at high latitudes. Significant differences exist in tropospheric specific humidity (Q). For 
example, MERRA simulates much higher Q in the low latitudes of the Northern Hemisphere (by up to 20%), 
whereas lower Q in the low latitudes over Southern Hemisphere (by up to 10%). These differences in Q are 
consistent with those in LNOx (e.g., >10% in middle and higher troposphere over the tropics), which could 
be due in part to the differences in convection in the two simulations. The differences in wind reanalysis 
between MERRA and NCEP induce different ocean evaporation and mixing, leading to different humidity 
and deep convection. Compared to AMIP, both NCEP and MERRA simulate higher ozone photolysis rate 
( O3J ) over tropics but lower ozone photolysis rate over middle and higher latitudes due to different clouds 
simulated in the model. As a result, compared to AMIP and MERRA, NCEP simulates lower OH concentra-
tions over low latitudes, especially in the lower troposphere. In the middle and upper troposphere, MERRA 
simulates much higher OH concentrations (by 4%–8%) than NCEP especially over the tropics, where strong 
solar radiation and convection occur.

Similar differences also exist in surface OH concentrations. Figure 2 shows the relative difference in surface 
OH and tropospheric OH (air-mass weighted) concentrations among the three simulations. Compared to 
AMIP simulation, both NCEP and MERRA simulate lower surface OH over the Northern Hemisphere and 
higher surface OH over the Southern Hemisphere. Compared to NCEP, MERRA generally simulates higher 
surface OH over most regions, except the areas along the Intertropical Convergence Zone and high latitudes 
in the Southern Hemisphere. Similarly, MERRA simulates higher tropospheric OH concentrations than 
NCEP over most of the globe. Despite the relatively small global mean differences in surface and tropo-
spheric OH (i.e., 1.0% and 2.0%), much larger differences exist regionally. The largest difference occurs over 
the tropics, with >10% difference over tropical Africa, Southeast Asia, tropical Pacific Ocean, tropical South 
America, and Southern Cone. Those differences are associated with different dynamical and thermodynam-
ic processes simulated in the model induced by different reanalyses.

Despite the nonlinearity of the chemical and dynamical system, several meteorological and chemical drivers 
are identified to have major controls on global mean tropospheric OH concentrations. Murray et al. (2014) 
found a linear relationship between global mean tropospheric OH concentrations and  3/2

O3 N CJ QS S , 
where O3J  represents tropospheric mean ozone photolysis rate, Q represents tropospheric mean specific 
humidity, SN represents the tropospheric sources of reactive nitrogen, and SC represents the tropospheric 
sources of reactive carbon. This linear relationship also exists in our simulations as shown in Figure S1. 
There is a strong linear dependence of global mean tropospheric OH concentrations on  3/2

O3 N CJ QS S  
in all three simulations, with R2 = 0.8. Specifically, OH concentrations show strong linear dependence on 
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SN (R2 = 0.7–0.8) with weaker linear dependence on Q (R2 = 0.4) and SC
−3/2 (R2 = 0.2) and no significant 

dependence on O3J . The strong linear dependence of OH concentrations on SN suggests that interannual 
variability of global OH is highly correlated with NOx emissions (mainly by LNOx emissions), consistent 
with previous studies (e.g., Fiore et al., 2006; Murray et al., 2013).

Figure  3 shows the time series of tropospheric OH concentrations, tropical CO emissions, global mean 
methane emissions, tropical total NOx emissions, tropical NOx emissions without LNOx, and global mean 
LNOx emissions over 1980–2017. Despite differences in mean tropospheric OH driven by the different me-
teorological forcing, all three simulations show an overall increasing trend in OH concentrations, which 
agrees well with those simulated by the CCMI models (e.g., Zhao et al., 2019). This suggests that meteor-
ology could affect the magnitudes of mean OH concentrations, but not the trend. Similar findings are also 
shown in Gaubert et al. (2017), where they used the ensemble-based Data Assimilation Research Testbed 
(DART) (Anderson et al., 2009) and MERRA-2 meteorology. Stevenson et al. (2020) suggests the simulated 
increasing trend in OH concentrations is mainly due to the increases in tropical NOx emissions, which is 
also shown in our study. As shown in Figure 3, despite the increases in CO and CH4 emissions, the increases 
in tropical NOx emissions dominate the increasing trend in OH. The increases in tropical NOx emissions are 
mainly due to the increases in the prescribed tropical anthropogenic NOx emissions and a slight increasing 
trend in LNOx emissions simulated in the model, which remains to be tested by analysis of past observa-
tions. He et al. (2020) showed a −6% and +9% difference in global mean tropospheric OH concentrations 
when applying scaling factors of 0.5 and 2.0 to LNOx emissions. Due to the strong correlations between OH 
concentrations and NOx emissions, the impacts on OH due to different LNOx emissions are much larger 
than those due to different meteorological forcing estimated in this study (i.e., ∼2%). This also suggests that 
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Figure 1.  Zonal distribution of climatological mean (1980–2017) hydroxyl radical concentrations (OH, 105 molecules cm−3, row 1), temperature (K, row 2), 
specific humidity (g kg−1, row 3), lightning NOx emissions (LNOx, tonN yr−1, row 4), and ozone photolysis rate ( O3J , 10−6 s−1, row 5) from the simulation using 
Atmospheric Model Intercomparison Project (AMIP) protocol, and simulations driven by wind reanalysis from National Centers for Environmental Prediction 
(NCEP) and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA), and the absolute difference between NCEP and MERRA 
(right column).

Figure 2.  Relative difference (shown in percentage, %) in surface hydroxyl radical (OH) (row 1) and tropospheric air-mass weighted mean OH (row 2) 
concentrations among the simulation using Atmospheric Model Intercomparison Project (AMIP) protocol, and simulations driven by wind reanalysis from 
National Centers for Environmental Prediction (NCEP), and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA).
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better constraints on NOx emissions (especially LNOx) are necessary to reduce model uncertainty in OH 
estimates. On the other hand, the important role of LNOx emissions on OH and methane lifetime is not 
only demonstrated in GFDL-AM4 model but also in other models. For example, Murray et al. (2013) found 
that the interannual variability in tropospheric OH is highly sensitive to LNOx in GEOS-chem model. Wild 
et al. (2020) found LNOx as the largest contributor to the methane lifetime in RSGC/UCI CTM and CAM-
Chem and as the second largest contributor in GISS model.

3.2.  Implications for Methane Budget

Different meteorological forcing leads to different OH levels, and therefore results in different estimates for 
methane emissions and lifetime. Table 1 summarizes the methane budget estimated from all the simula-
tions. The methane emissions derived from concentration-driven simulations are based on mass balance, 
that is, the annual change of methane burden equals to the methane sources minus sinks. Since the dif-
ferences in OH levels between MERRA and AMIP are small, the differences in derived methane emissions 
between MERRA and AMIP are also small, with an average of −1.8 Tg yr−1. However, much larger differ-
ences exist in OH levels between MERRA and NCEP, leading to an average of +11.2 ± 3.5 Tg yr−1 difference 
in derived methane emissions. Specifically, during the methane stabilization period (i.e., 1999–2006), the 
difference in derived methane emissions between MERRA and NCEP varies from 8.5 to 15.0 Tg yr−1, with 
an average of 11.9 Tg yr−1. This magnitude of the difference is much larger than the imbalance (i.e., sourc-
es minus sinks) during this period, demonstrating the critical impacts of OH levels on methane emission 
estimates. On the other hand, OH differences are much larger regionally, especially over the tropics. For 
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Figure 3.  Global tropospheric air-mass weighted hydroxyl radical (OH) concentrations, tropical carbon monoxide (CO) emissions, global mean methane 
emissions, tropical nitrogen oxide (NOx) emissions, tropical NOx emissions without lightning NOx (LNOx), and global mean LNOx emissions over 1980–2017.

AMIP NCEP MERRA NCEPe MERRAe

Emissions (Tg yr−1) 584 ± 35 571 ± 37 583 ± 35 565 ± 35 576 ± 33

Sinks (Tg yr−1) 562 ± 42 549 ± 43 561 ± 41 545 ± 42 555 ± 40

Tropospheric lifetime (years) 10.0 ± 0.4 10.2 ± 0.5 10.0 ± 0.4 10.2 ± 0.5 9.9 ± 0.4

OH (106 molecules cm−3)a 1.05 ± 0.04 1.03 ± 0.04 1.04 ± 0.04 1.02 ± 0.04 1.05 ± 0.04

Abbreviations: AMIP, Atmospheric Model Intercomparison Project; MERRA, Modern-Era Retrospective analysis for 
Research and Applications, Version 2; NCEP, National Centers for Environmental Prediction.
aRounded to two decimal places.

Table 1 
1980–2017 Methane Budget and Tropospheric Hydroxyl Radical (OH) (Annual Mean ± Standard Deviation)
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example, OH difference between MERRA and NCEP varies from 3% to 6% over most of the tropical regions, 
with much larger differences over tropical Africa, Southeast Asia, tropical Pacific Ocean, tropical South 
America, and South Cone (>10%). Such differences can have significant impacts on estimated regional 
methane emissions. Previous studies suggest increases in tropical emissions are responsible for recent glob-
al methane growth (Lunt et al., 2019; Schaefer et al., 2016), while methane emissions over Southeast Asia 
are likely overestimated (Patra et al., 2016). With such large differences in OH levels over the tropics, it is a 
great challenge to build confidence in derived methane emissions from inverse modeling with prescribed 
OH fields.

As methane burdens are very similar in the three simulations (due to prescribed lower boundaries), with 
different OH concentrations in AMIP, NCEP, and MERRA experiments, the tropospheric methane lifetimes 
are slightly different, with NCEP having a 0.28 years longer methane lifetime than AMIP and MERRA hav-
ing a similar methane lifetime as AMIP.

Emissions derived from concentration-driven simulations such as the above only represent global totals and 
do not have regional features. To investigate regional impacts, we further scrutinize the emission-driven 
simulations. Figure 4 shows the absolute difference in the optimized methane emissions between NCEPe 
and MERRAe. Time series of methane budget can be found in Figure S2. Methane emissions in MERRAe 
are in general higher than those in NCEPe. The differences in optimized methane emissions in the two 
emission-driven simulations are about +11.0 ± 4.5 Tg yr−1 during 1980–2017 (with +11.7 Tg yr−1 during 
1999–2006 and +7.0 Tg yr−1 during 2007–2017). In the emission-driven simulations, we produce similar 
simulated methane concentrations by constraining methane emissions with surface methane observations. 
Therefore, the emissions derived for the MERRAe simulation are higher to offset the impacts from the high-
er simulated OH concentrations with MERRA. The differences in OH concentrations between NCEPe and 
MERRAe range from 0.4% to 4.9%, with a global average of 2.2% and the tropical average of 2.4%. As a result, 
methane emissions derived for MERRAe are about 5%–54% higher than NCEPe over most of the tropical 
region, which is about 8 Tg yr−1 higher over 30°S–30°N, and 3 Tg yr−1 (<5%) higher mainly over 30°–90°N 
(see Figure 4). With similar methane burdens but different OH concentrations in the NCEPe and MERRAe 
experiments, the tropospheric methane lifetimes range from 9.9 to 10.2 years with a difference of 0.24 years.

The annual mean estimated emissions from emission-driven simulations are about 7 Tg yr−1 lower than 
those from concentration-driven simulations. The prescribed methane concentrations are derived by Mein-
shausen et al.  (2017) to be used in the Climate Model Intercomparison Project-Phase 6 (CMIP6) experi-
ments, which considers both polluted events and background conditions. The surface observations used for 
the methane emission optimization is solely based on NOAA GML flask measurements from remote sites 
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Figure 4.  Absolute difference in methane emissions between MERRAe and NCEPe based on 1980–2017 annual mean.
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as described in He et al. (2020). Therefore, the prescribed methane concentrations are slightly higher than 
those from NOAA GML measurements. Despite similar annual changes in the methane burden, methane 
loss is larger in concentration-driven simulations than emission-driven simulations, leading to higher de-
rived methane emissions (see Table 1). However, the differences in the derived methane emissions and 
tropospheric methane lifetime due to different meteorological forcing are similar in the emission-driven 
and concentration-driven simulations. Globally, a 1% difference in OH levels could lead to about 5 Tg yr−1 
difference in estimated methane emissions, which is comparable to previous estimates (He et al., 2020).

4.  Summary
In this study, GFDL-AM4.1 model simulations are conducted to investigate the OH response to different 
meteorological forcing. Climatological global mean tropospheric OH concentrations differ across the three 
simulations, with the AMIP simulation producing the highest while the NCEP simulation produces the 
smallest level. Forced by the MERRA-2 reanalysis, the model estimates higher tropospheric OH concentra-
tions than that forced by the NCEP reanalysis (by ∼2%), with >10% higher OH concentrations over trop-
ics (e.g., tropical Africa, Southeast Asia, tropical Pacific Ocean, tropical South America, and South Cone). 
There is an overall increasing trend in tropospheric OH concentrations in all the model simulations (with 
or without atmospheric nudging). Results also suggest a strong linear dependence of OH concentrations 
on reactive nitrogen emissions. The model simulation driven by the MERRA-2 reanalysis suggests derived 
methane emissions (based on mass balance) are higher than those using the NCEP reanalysis by 11.2 Tg 
yr−1 and a lower estimated tropospheric methane lifetime by 0.24 years.

The model simulations driven by methane emissions forced with different meteorological reanalyses fur-
ther confirm the significant impacts of OH on derived methane emissions. Constrained with surface meth-
ane observations, methane emissions are optimized to force the model to reproduce observed methane 
trends and variability. Forced by different meteorological reanalyses, the model estimates different OH con-
centrations (by ∼2%), leading to 11.0 Tg yr−1 and 0.24 years difference in the estimated optimized methane 
emissions and methane lifetime, similar to those from the concentration-driven simulations.

The results also suggest that meteorology affects the mean OH concentrations but not OH trend, while the 
latter shows strong correlation with reactive nitrogen emissions (mainly tropical NOx emissions). Despite 
the relatively small difference in global mean tropospheric OH concentrations due to different meteoro-
logical forcing (∼2%), the difference in OH concentrations are much larger regionally and therefore the 
difference in the derived methane emissions can be significant (e.g., 8 Tg yr−1 over tropics estimated in this 
study). This demonstrates the critical role of OH in estimating the methane budget, no matter whether a 
top-down inversion or bottom-up approach is used, highlighting the need to better constrain OH abundanc-
es and variations.

Data Availability Statement
Methane surface observations are downloaded from the NOAA Global Monitoring Laboratory (www.esrl.
noaa.gov/gmd/ccgg/trends_ch4/). NCEP data are downloaded from the NCAR Research Data Archive 
(https://rda.ucar.edu/datasets/ds090.0/) and MERRA2 data are downloaded from https://search.earthdata.
nasa.gov/search?q=M2T3NVASM.
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